随着半导体技术的发展,光刻技术传递图形的尺寸限度缩小了2~3个数量级(从毫米级到亚微米级),已从常规光学技术发展到应用电子束、 X射线、微离子束、激光等新技术。
光刻是将掩模版上的图形转移到涂有光致抗蚀剂(或称光刻胶)的硅片上,通过一系列生产步骤将硅片表面薄膜的特定部分除去的一种图形转移技术。光刻技术是借用照相技术、平板印刷技术的基础上发展起来的半导体关键工艺技术。
随着半导体技术的发展,光刻技术传递图形的尺寸限度缩小了2~3个数量级(从毫米级到亚微米级),已从常规光学技术发展到应用电子束、 X射线、微离子束、激光等新技术;使用波长已从4000埃扩展到 0.1埃数量级范围。光刻技术成为一种精密的微细加工技术。随着技术的发展,光刻技术不断推陈出新,出现了很多针对某几种用途的专门技术,在此特为大家盘点介绍一些光刻技术。
掩膜光刻由光源发出的光束,经掩膜版在感光材料上成像,具体可分为接近、接触式光刻以及投影光刻。相较于接触式光刻和接近式光刻技术,投影式光刻技术更加先进,通过投影的原理能够在使用相同尺寸掩膜版的情况下获得更小比例的图像,从而实现更精细的成像。
目前,投影式光刻在最小线宽、对位精度、产能等核心指标方面能够满足各种不同制程泛半导体产品大规模制造的需要,成为当前 IC 前道制造、IC 后道封装以及 FPD 制造等泛半导体领域的主流光刻技术。根据光源不同,掩模光刻机还可以分为紫外光源(UV)、深紫外光源(DUV)、极紫外光源(EUV)。
为了提供波长更短的光源,极紫外光源(EUV)为业界采用。目前主要采用的办法是将二氧化碳激光照射在锡等靶材上,激发出13.5 nm的光子,作为光刻机光源。目前仅有由荷兰飞利浦公司发展而来的ASML(阿斯麦)一家可提供可供量产用的EUV光刻机。这是目前最先进的光刻技术。
X射线因为波长很短,所以几乎没有衍射效应,所以很早就进入了光刻技术研发的视野内,并且在八十年代就有了X射线光刻。九十年代,IBM在美国佛蒙特州建了一条采用同步辐射光源的X射线光刻机为主力的高频IC生产线,美方为主要客户。而当年X射线光刻技术,是当时的下一代光刻技术的强有力竞争者。后来随着准分子激光和GaF透镜技术的成熟,深紫外光刻技术延续了下去,在分辨率和经济性上都打败了X射线光刻。X射线光刻就退出了主流光刻技术的竞争。
现在用X射线光刻的,主要是LIGA技术,用来制造高深宽比结构的一种技术,可以制造出100:1的深宽比,应用于MEMS技术当中。由于X射线准直性非常好,传统的X射线复制的。掩模版使用的是硅梁支撑的低应力氮化硅薄膜,上面有一层图形化的金,作为掩蔽层。曝光方式采用扫描的方式,效率不高。
X射线光源最大的优势在于他可以做出高深宽比的图形,但是最大的问题也是由于他的穿透性太强导致了无法用透镜进行放大和缩小,因此图形尺寸和掩模版的尺寸相同,所以X射线光刻过分依赖电子束光刻掩模版的精度,故目前没有大量普及。
离子束投影曝光系统的结构和工作原理与光学投影曝光的结构与原理类似,所不同的是曝光粒子是离子、光学系统采用离子光学系统,而掩模版则由可通过和吸收离子的材料制备。离子束曝光掩模版通常采用Si材料制成投射/散射式的二相掩模版技术。离子束投射光学系统一般也采用4:1缩小的投射方式,透镜实际上是一个可对离子进行聚焦作用的多电极静电系统。常见的离子束光刻技术包括聚焦离子束光刻(FIB)和离子投影光刻(IPL)。
FIB系统采用液态金属离子源,加热同时伴随着一定的拔出电压获得金属离子束,通过质量选择器来选择离子,通过电子透镜精细聚焦的金属离子,在偏转线圈的作用下,形成扫描光栅。离子束可通过溅射对样品进行表面成像。聚焦式离子束技术是利用静电透镜将离子束聚焦成非常小尺寸(与电子束直写光刻技术类似。不需要掩膜板,应用高能粒子朿直写。
离子投影曝光( lPL)是将平行的离子束穿过掩膜,将缩小的招膜图形投射到基底上,使用PMMA光刻胶。当具有一定能量的离子撞击靶材表面时两者之间会发生一系列的交互作用,其中包括膨胀、刻蚀、沉积、铣削、注入、背散射和形核反应等。主要用于制作修复掩膜版和对晶直接光刻。
但离子束光刻存在离子源制备,掩膜板畸变,衬底工艺损伤,效率低等问题,很难在生产中作为曝光工具应用,目前主要用作VISI中的掩模修补工具和特殊器件的修整。
电子束曝光(EBL)始于上世纪60年代,是在电子显微镜的基础上发展起来的用于微电路研究和制造的曝光技术,是半导体微电子制造及纳米科技的关键设备、基础设备。电子束曝光是由高能量电子束和光刻胶相互作用,使胶由长(短)链变成断(长)链,实现曝光,相比于光刻机具有更高的分辨率,主要用于制作光刻掩模版、硅片直写和纳米科学技术研究。
电子束曝光主要有可变矩形电子束曝光系统、电子束投影光刻技术、大规模平行电子束成像三种技术。电子束曝光是电子光学、机械、电子技术、计算机及半导体工艺集成,包含了检测与定位、环境控制、超高真空、计算机控制、系统控制软件、多功能图形发生器、激光定位工件台和电子光学柱8个子系统,其中电子光柱体、图形发生器和激光工件台是关键部件。
纳米压印技术是一种新型的微纳加工技术。该技术通过机械转移的手段,达到了超高的分辨率,有望在未来取代传统光刻技术,成为微电子、材料领域的重要加工手段。
纳米压印技术,是通过光刻胶辅助,将模板上的微纳结构转移到待加工材料上的技术。报道的加工精度已经达到2纳米,超过了传统光刻技术达到的分辨率。这项技术最初由美国普林斯顿大学的Stephen. Y. Chou(周郁)教授在20世纪90年代中期发明。
由于纳米压印技术的加工过程不使用可见光或紫外光加工图案,而是使用机械手段进行图案转移,这种方法能达到很高的分辨率。报道的最高分辨率可达2纳米。此外,模板可以反复使用,无疑大大降低了加工成本,也有效缩短了加工时间。因此,纳米压印技术具有超高分辨率、易量产、低成本、一致性高的技术优点,被认为是一种有望代替现有光刻技术的加工手段。
热扫描探针光刻(t-SPL)是近年来新开发出的一种光刻技术,其与当今的电子束光刻(EBL)相比具有更多的优势:首先,热光刻显改善了二维晶体管的质量,抵消了肖特基势垒,阻碍了金属与二维衬底交界处的电子流动;与电子束光刻(EBL)不同,热光刻技术使芯片设计人员能够轻松地对二维半导体进行成像,之后在需要的地方对电极进行图案化; 此外,热扫描探针光刻(t-SPL)制造系统有望在初期节省成本;最后,通过使用平行热探针,能够轻松地将该热制造方法推广到批量的工业生产当中。成本更低,有望成为当今电子束光刻的替代品。
激光直写技术是一种近年来应用广泛的超精密加工技术。激光直写是利用强度可变的激光束对基片表面的抗蚀材料实施变剂量曝光,显影后在抗蚀层表面形成所要求的浮雕轮廓。激光直写系统的基本工作原理是由计算机控制高精度激光束扫描,在光刻胶上直接曝光写出所设计的任意图形,从而把设计图形直接转移到掩模上。
激光直写技术主要用于制作平面计算全图、掩模、微透镜、微透镜阵列、Fresnel微透镜、Fresnel波带板、连续位相浮雕的闪耀光学元件等,制作工艺己经逐渐成熟。激光直写技术的发展趋势是从直角坐标写入系统到极坐标写入系统,直至多功能写入系统;从基片小尺寸到大尺寸,从平面写入到球面、柱面以及曲面;从利用光刻胶材料到聚合物以及其他特殊工艺材料;写入元件的特征尺寸从几百微米到亚微米;元件制作时间从几天到几小时甚至几分钟;从制作二值图样到写入连续浮雕轮廓;从光学元件到微电子、集成电路、集成光学器件等;从发达的国家到发展中国家,并己经应用到空间光学、光通讯、光学显示等领域,为DOE和微电子、微光学、微机械器件的制作提供了一种新的制作设备。
双光子聚合是物质在发生双光子吸收后所引发的光聚合过程。双光子吸收是指物质的一个分子同时吸收两个光子的过程,只能在强激光作用下发生,是一种强激光下光与物质相互作用的现象,属于三阶非线性效应的一种。双光子吸收的发生主要在脉冲激光所产生的超强激光的焦点处,光路上其他地方的激光强度不足以产生双光子吸收,而由于所用光波长较长,能量较低,相应的单光子过程不能发生,因此,双光子过程具有良好的空间选择性。
一般利用双光子聚合制造3D打印机,可以实现突破传统光学衍射极限的增材制造。不过,华中科技大学的甘棕松教授发明的超分辨纳米光刻技术利用光刻胶双光子吸收特性,采用双束光进行光刻,一束为飞秒脉冲激光,经过扩束整形进入到物镜,聚焦成一个很小的光斑,光刻胶通过双光子过程吸收该飞秒光的能量,发生光物理化学反应引发光刻胶发生固化;另外一束为连续激光,同样经过扩束整形后,进入到同一个物镜里,聚焦形成一个中心为零的空心状光斑,与飞秒激光光斑的中心空间重合,光刻胶吸收该连续光的能量,发生光物理化学反应,阻止光刻胶发生固化。两束光同时作用,最终只有连续光空心光斑中心部位的地方被固化。甘棕松教授目前已经把空心光斑中心部位最小做到9nm,至此突破光学衍射极限的超分辨光刻技术在常规光刻胶上得以完美实现。
虽然各种光刻技术不断涌现,但相比于传统的紫外掩模光刻技术而言,大都在工业量产中都无法完全克服生产效率低、对准精度低、分辨率低等缺点。目前,应用较多的光刻技术主要为EUV、DUV等掩模光刻技术,用于工业量产,也是最受关注的光刻技术。公开资料显示,中国最强的光刻机生产商是上海微电子装备公司(SMEE),主要研发DUV光刻机,目前其最先进的SSA600/20光刻机分辨率可达90nm。
上海微电子是国内唯一从事研发、生产以及销售高端光刻机的公司,也是全球第四家生产IC前道光刻机的公司。在2020年,金融局走访调研上海微电子时,上海微电子
预计将于2022年交付首台28nm工艺国产沉浸式光刻机,国产光刻机将从此前的90nm制程一举突破到28nm制程。上海微电子在中端先进封装光刻机和LED光刻机领域技术领先,先进封装光刻机国内市场占有率高达80%、全球市场占有率达40%,LED光刻机市场占有率第一。实际上,02专项要求实现半导体设备28nm制程的国产化,目前国望光学的物镜、科益虹源的光源、华卓精科的双工件台、启尔机电的浸液系统等零部件都已实现突破,只差上海微电子光刻机集成。位于北京亦庄的国产验证28nm产线也预计明年投产,届时上海微电子的28nm光刻机有望导入产线nm光刻设备的国产化替代。
此外,国产EUV量产型光刻机目前仍在开发中,中国科学院长春光学精密机械与物理研究所在2016年验收了原理技术样机,合工大已开发出DPP-EUV光源,但功率较低。电子束光刻目前国内主要由电工所在开发,但相比于国际厂商还存在差距。
而纳米压印技术国内的主要厂商为青岛天仁微纳,现已成为纳米压印领域市场占有额超过95%的头部企业,建立了自主知识产权的核心技术与专利壁垒,设备销售遍布国内知名大学科研院所和企业。激光直写光刻设备主要国产厂商包括江苏速影、合肥芯碁等,与国际巨头Heidelberg、矽万等相比,技术差距正逐渐缩小。
光刻设备的国产化不仅推动了半导体产业的进步,同时也推动了国产仪器市场的发展。笔者从其他渠道了解到,上海微电子也采购了某国产双频激光干涉仪。由于最早国产的先进前道光刻机由国企上海微电子(SMEE)开启研制,2007年上海微电子大量采用外国关键零部件集成了90 nm干式投影光刻机。后因《瓦森纳协定》的限制,关键部件被国外“卡脖子”而失败。随着国内仪器设备的技术进步,上海微电子通过采购国产零部件集成先进的光刻。
联系人:石经理
手 机:18106121178(微信同号)
Q Q:460917578
邮 箱:18106121175@www.huidadr.com
官 网:www.huidadr.com