5/31/2010,2010年4月出版的PTL主要刊登了以下一些方向的文章,包括:半导体有机激光器和放大器、调制器和光开关、传输和光波导、无源器件、有源器件、全光技术、测量技术、传感器、模拟和射频光子学、网络及子系统,笔者将逐一评析。
由于量子层叠(QC)激光器制造技术的发明,量子层叠微腔激光器已经引起了研究人员的广泛关注,其原因是它具有超小体积、高Q值和低阈值电流等优点。然而,在微谐振腔侧壁的所有内反射过程需要回应壁模式(WGM)下的模式光射线来取代在分布反馈式激光器中的光栅以进行弱反射。因此,在中红外回应壁模式微环激光器工作时,其模式特性对斜侧壁的影响是有必要彻底进行研究的一个问题。中国科学院集成光电子国家重点实验室和半导体研究所的研究人员基于有限差分时域方法(FDTD),研究了带有斜侧壁和含金属层微尺寸中红外共振器的模式特性,研究人员提出的带有斜侧壁和含金属层微尺寸中红外共振器的模式特性图如图1.1所示。
众所周知,具有紧凑结构的相干光源所发出的红光对于许多实际应用起到关键作用,尤其是体现在光动力治疗方法、激光投影显示技术和生物光子学应用方面。一个光学泵浦半导体盘型激光器(OP-SDL)能够产生衍射受限的大功率光束,而且当掺杂恰当的半导体混合物时,它能被设计成可发射650纳米到中红外波长光波的泵浦半导体盘型激光器。来自芬兰坦佩雷技术大学光电子研究中心的研究人员采用周期极化化学计量比掺氧化镁LiTaO3晶体以实现一个光学泵浦半导体盘型激光器的频率倍增过程。其中,光学泵浦半导体盘型激光器的腔体配置图如图1.2所示。
对于短距离光纤通信技术而言,垂直腔面表面发射激光器(VCSEL)是一种非常合适的光源,其原因是它具有低成本、可批量生产和较小功率消耗等优点。实际中,垂直腔面表面发射激光器的高速率直接调制过程能进一步提高光纤通信网络中信光号的传输容量,尤其是它能对基于以太网的区域光网络和板级光互连技术的发展起到关键作用。近年来,许多不同的方法被研发出来以提高不同工作波长垂直腔面表面发射激光器的直接调制带宽。来自加拿大蒙特利尔McGill大学电子与计算机工程系的研究人员提出并设计了一种工作波长为850纳米,并且具有低密度注入空穴垂直腔面表面发射激光器,同时实现了高达25Gb/s速率的直接调制过程。研究人员采用的具有低密度注入空穴垂直腔面的表面发射激光器的照片如图1.3所示。
白光发光二极管(LED)正逐步取代传统的白炽灯泡和具有紧凑结构的荧光灯占领照明市场,其原因是它有节能这一突出的发展优势。目前,有两种主要的方法被采用来制造白光发光二极管:其一是采用黄磷覆盖在蓝光发光二极管上(或者采用一个多磷的紫外发光二极管)的制造技术;其二是采用红色、绿色和蓝色分立发光二极管(RGBLED)的芯片颜色混合技术。来自中国香港大学电子和电器工系的研究人员报道了采用激光显微加工技术制造去顶圆锥(TC)白光发光二极管的方法。研究人员采用了一种改进激光显微加工的方法制造了一个具有50度倾斜角斜壁的圆盘形蓝光发光二极管。在制造工艺过程中,一层金属铝被涂覆在斜壁上并在其底部表面形成了一个完整的反射镜。由于实现了高质量的反射,侧面传播的光子也将重定向到向上直接发射的方向上,因此在法线%的增长值。相比较传统的光子发光器件而言,这种去顶圆锥发光二极管(TC-LED)发射的白光,被研究人员证明在其颜色均匀性上将有37%的大幅度提升。图1.4是研究人员采用三种不同方法进行发光二极管涂覆的实现方案图。
为了最大程度地提升光通信系统的传输系能,减少光学设备的损耗是一个不得不考虑的一个重要问题。随着单信道传输速率的增长,宽带光信号的光谱很容易受到滤波器件和色散效应的影响,从而必然导致光信号接收性能的下降。来自以色列耶路撒冷希伯来大学应用物理系的研究人员提出并设计了一种光学光谱处理器来处理具有任意相位和幅度的光谱,同时将该光学光谱处理器应用在具有100GHz谱宽无色波分复用(WDM)的自适应滤波技术中。研究人员提出的方案采用自由空间的光器件以发射来自光相位调制器上平面光波导回路的色散光。该光学光谱处理器能在75GHz的可用带宽上,557MHz的间隔尺寸上实现3GHz光学分辨率的工作。研究人员设计的光学光谱处理器(PSP)方案如图2.1所示。
近年来,双光子微影技术(TPL)对于任意形状聚合体三维(3D)结构已经显示出其潜在的应用优势。双光子微影技术的主要优势体现在其直接处理的过程,该过程可以创造出非常复杂甚至是传统刻蚀技术所不能制造的结构。来自意大利MagnaGraecia大学的研究人员设计并提出了一种采用双光子聚合的方法在光纤顶部构造不同微光结构的新型构造技术。研究人员证明该方法相比较以前的成形方法而言,只需要采用简单的配置就可以实现一般三维形状的快速构造过程。本文报道的一系列不同光学结构,不同光学功能的设计流程都证明了研究人员提出的该方法实现过程具有多功能性和良好的光学性能。图1.6是研究人员提出的在构造工艺过程中对光纤进行加工的实现方案图。
随着表面等离子极化(SPP)现象的出现,表面等离子波(SPW)的传播过程代表了一种电磁波的传播模式,这种模式能最大程度地被限制在金属电介质界面上并且在金属电介质界面两壁呈现出指数级次衰退现象。表面等离子波的传播过程不可能存在于完美的电导体(PEC)和电介质界面的光滑表面上,除非电导体的表面被周期性地进行打孔加工。中国宁波大学理学系光子研究所的研究人员使用有限差分时域的方法研究了在一个带有垂直切口的金属周期凹槽光栅上,传播表面等离子波的谐振机理。图1.7所示为具有不同垂直切口的电导体光栅的色散特性图。
在微电子应用领域,多晶硅(polySi)是一种基本材料,由于多晶硅能被容易地沉积到几乎任意形状的衬底上,并且多晶硅上能灵活地承载有源光子器件,因此多晶硅在硅基光电的应用中起着不可或缺的作用。新加坡微电子研究所的研究人员设计并提出了一种基于硅基光电子集成回路的多晶硅光子器件,其中多晶硅线波导的工艺制作过程中采用了不同的低热固相结晶(SPC)方法。图1.8是研究人员采用不同的退火工艺程序获得硅沉积薄膜的拉曼光谱比较图。
目前在光信号域对光数据流完全处理的研究工作中,光子集成回路的设计和实现是一个重要并且具有挑战性的研究课题。实际中,硫系玻璃(ChGs)作为一种具有极好特性基片的出现对于集成非线性光子(NLO)器件的应用具有如下优势:超快速的宽带光响应时间、高的光学非线性效应、在电信级波长应用中低的线性和非线性损耗。澳大利亚国立大学激光物理研究中心高速宽带光系统研究所的研究人员提出并设计了一种亚微米尺寸三硫化二砷波导的工艺制作流程,并描述了该波导的特性。在原子能显微镜(AFM)下,图1.9显示了去光阻制程的结果是该波导的表面粗糙度增加了大约3倍。
在率或大功率的光纤激光器中,作为一种窄线宽反馈式器件,光纤布拉格光栅(FBG)的应用引起了研究人员的广泛关注,其原因是光纤布拉格光栅能通过减少外部块状光子器件的使用来简化激光器的外部设计。来自澳大利亚悉尼大学化学系的研究人员设计和报道了一种内部含有活性介质II型布拉格光纤光栅的飞秒光纤激光器的搭建过程。这种激光器的设计和实验过程如图4.1所示。
硅基集成回路技术的实现已经获得大量的赞誉,其原因是硅基集成回路的封装密度改善了光子器件的功能,并且可以降低成本耗费。基于SOI的硅基线波导因为能够实现超高密度微型光子器件的集成过程,因此被认为是一个具有发展优势的结构平面波导。然而,当研究人员将几百纳米尺度的硅基线微米的普通单模光纤中时,发现大的耦合损耗将是其不可忽视的工艺制作缺陷。来自中国北京半导体研究所的研究人员设计并验证了一种采用有机玻璃(PMMA)制作的,基于绝缘体的硅光光纤连接到波导的模斑转换器(SSC)。这种模斑转换器的结构图如图4.2所示。
近年来,关于量子点半导体光放大器(QD-SOA)的一些研究结果已经显示,量子点半导体光放大器具有超过传统的体效应和量子阱(QW)放大器的优越性能。这些优越性能体现在量子点半导体光放大器可以提升饱和功率、实现大的增益、进行时钟恢复和提高带宽。来自日本大阪大学的研究人员提出并实验验证了在柱状量子点(CQD)半导体光放大器(SOA)中使用红移偏置滤波器的方法,基于自相位调制效应的10Gb/s、20Gb/s和40Gb/s归零码信号的再生放大。研究人员还研究了放大器入射功率和信号Q平方值的函数关系,并同时进行了一种采用量子阱半导体放大器作为比较的实验。研究结果显示仅可能在量子点放大器中才能实现基于自相位调制过程的信号再生放大。研究人员采用量子点半导体光放大器构建的实验系统如图5.1所示。
在电子领域中,在信号处理系统中必须设计和应用的方波时钟信号,在电压坪和驱动函数电门之间实现了良好的预定义转移过程。与此类似,在光信号域中,尤其是在光子集成回路中,光方波时钟信号的实现也被期望可以实现相同的功能。美国罗彻斯特大学的研究人员提出并实现了基于全光触发器的光方波时钟信号的产生方案。研究人员通过在行波型半导体光放大器中,基于交叉增益调制的过程用输出来调制输入,将来自谐振型半导体光放大器的双稳态输出光功率在开或关的状态之间进行切换。其中,所有的有源器件都被直流电流驱动,并且它们的波长和时钟频率可以被选择。同时,在体材料的光子器件中一个3.5MHz工作频率的时钟信号被有效实现。研究人员还建议在光子集成回路和全光信号处理的过程。
联系人:石经理
手 机:18106121178(微信同号)
Q Q:460917578
邮 箱:18106121175@www.huidadr.com
官 网:www.huidadr.com