内窥镜的图像处理中心,核心功能是将拍摄采集到的图像进行处理加工然后显示出来,也可在此进行录像、数据保存、归档、分析等。
和义广业【行业分析】之荧光电子内窥镜,本篇主要介绍荧光内窥镜的定义,原理及组成,简要介绍了荧光内窥镜中荧光分子探针的结构与性能,重点介绍了内窥镜光学系统中摄像系统、冷光源、数据处理系统的组成以及参数要求。
传统白光成像缺乏疾病特异性的光学特征,无法定位和可视化癌前病变,另外某些疾病病变的弥漫性和斑片状,进一步阻碍了检测。随着技术进一步发展,逐渐开始进行提高病变组织识别率的技术探索:窄带成像方法、激光共聚焦成像方法、自体荧光成像和光学分子成像1。本文以下内容主要介绍光学分子成像。光学分子成像技术使用荧光标记物与生物体内的小分子、蛋白质或者抗体等结合,借助这些荧光标记物进行诊断。在激发光的激发下,标记的肿瘤细胞等病变组织与正常组织图像呈现出高对比,医生可以观察肿瘤大小、轮廓等信息,从而监测肿瘤的生长、位置转移等状态。在肿瘤切除手术过程中,通过对肿瘤组织结构进行荧光标记,实时显示肿瘤区域荧光图像,可以帮助外科医生对肿瘤形状等特征进行判别,从而实现与正常健康组织区分,达到精准治疗的目的。
可见光的波长范围为 380-760nm,红外的波长范围大约在 0.76-50 μm之间。当荧光物质被外界特定能量(如激光等)激发,会引起荧光物质的电子由低能级(基态)跃迁至高能级(激发态),然后电子又会由高能级释放能量回归低能级。在由高能级向低能级跃迁的过程中,电子会释放能量,能量以一定频率光波的形式被释放,产生的光波为荧光。
荧光探针是荧光成像技术最重要的载体。荧光探针主要由目标底物的识别基团和荧光染料两部分构成,在目标物的作用下,识别基团从探针分子上脱落,从而裸露出荧光团进而发挥成像的作用2。目前,可用于探针设计的有机荧光染料主要包括以下几种:香豆素、氟硼荧、花菁和罗丹明;而无机荧光材料主要包括量子点和一些纳米材料。
近红外荧光探针因其结构相对简单、易于合成以及功能较多的特点被广泛应用。近10年来,荧光成像技术主要集中在近红外窗口,近红外一区(NIR-I,700-900nm)荧光成像以其高灵敏度、快速反馈、无危害辐射、低成本等优点,在生物医学研究中受到广泛关注3。其常用的荧光母体主要有如下几类:花菁类、氧杂蒽类、BODIPY 类等。传统的花菁类染料具有较大的摩尔消光系数、较高的吸收截面、可控的吸收和发射波长以及较低的生物毒性等优势,被广泛应用于离子检测及肿瘤定位等研究领域中。花菁染料的优点使其成为近红外荧光探针的重点研究方向之一。花菁类染料通常是两个含氮芳香杂环通过奇数个碳原子的聚乙炔链相连接形成的大共轭结构,其发射波长在 650-900 nm 之间。其分子内的 1,2-亚乙烯基(=CH-CH=)单元的增加或减少可实现对花菁染料吸收和发射波长的动态调整。据报道,每增加一个 1,2-亚乙烯基单元,就会使得相应的花菁染料的吸收波长红移100 nm4。其中最具代表的分子染料是获得FDA批准临床应用的吲哚菁绿ICG
ICG 分子为三维立体结构,其两个多环结构具有亲脂性(如亲磷脂成分),而其硫酸盐基团具有亲水性,因此ICG 具有亲脂和亲水的双重特性;
荧光电子内窥镜主要由摄像系统、数据处理系统、光源和显示器四部分组成。荧光内窥镜在技术特点上的难度主要体现在以下两个方面:
(2)镀膜技术。由于荧光内窥镜的镜片数量远超过普通白光内窥镜,其单面反射率需控制在0.3%以内,
摄像系统主要由机械结构、图像传感器、光学成像系统、内部导线、导光光纤等组成,功能为将待观察的表面信息,由光信号转换成电信号。
图像传感器并不是电子内窥镜的独有器件,硬管式内窥镜和光学纤维内窥镜也可连接图像传感器,电子内窥镜中的图像传感器位置在摄像系统的前端,另外两种内窥镜在位于后端手柄处。固态图像传感器分为电荷耦合器件图像传感器(CCD)和互补金属氧化物半导体图像传感器(CMOS)。这两种图像传感器的均是将光信号转换电信号的工作原理。二者主要对比如下图所示8:
CMOS 图像传感器近年来增长迅速,已接近全面替代CCD传感器。在这样的背景下,行业主要参与者都在加大CMOS 图像传感器的研发投入力度。
在各应用领域的主流产品中,绝大部分采用了三巨头的CMOS传感器。市场热门的手机都是采用索尼、三星与豪威科技(Omnivision,简称OV,韦尔股份收购)的产品,这三家把持着大部分消费类电子领域CMOS传感器的市场份额。而在汽车和安防等行业应用领域,一般都是选用安森美,OV与索尼三家的产品。
行业龙头索尼在2016年占据了42%的市场份额,产品涵盖各个消费类电子到各类行业应用(如汽车、安防、工业等),且主攻高端市场,技术实力最强;其次是三星,主攻消费类电子市场,多是自产自销,在技术上紧追索尼,已经可以提供与索尼同级别的CMOS传感器,但三星的产品在行业应用较少;第三位豪威科技,在行业应用上有多年积累,尤其是在车载 CMOS传感器应用领域,市占率高于索尼9。
10光学成像系统承担的则是将待拍摄的画面呈现在 CMOS or CCD上,光学成像系统是三大种类内窥镜共有部分,也是荧光电子内窥镜必不可少的部分。光学成像系统由一组镜片组成,其镜片材料通常为玻璃或者人工树脂,手机相机的镜组材料通常是后者,而单反相机的镜组材料通常为前者。
物体图像的入射光线,最先通过物镜玻璃,进入物镜后平行传导。进入物镜的入射光线和水平线的夹角,即视角(DOV),Direction Of View. 内窥镜视角一般有0°,12°,30°,70°,90°。医用的电子内窥镜和光学纤维内窥镜的前端均可弯曲,但光学纤维内窥镜因为光纤易断裂,和金属做成的电缆相比,韧性远远不足,医用电子内窥镜的最大弯曲角度为 270°,光学系统的视场角为 90°时,即可保证观察无盲区。
最小距离。大于这个距离的两个像点就能被识别为两个点,而小于这个距离的两个点经过光系统后就会被识别为一个点。图像传感器的光学分辨率是用每毫米上可以分辨的黑白线对数来表示,即每毫米的宽度上,有多对像元。这里需要区别的是我们常规了解的图像分辨率,图像分辨率的定义是单位距离内的像用多少个像素来显示。例如:智能手机相机,使用的微型图像传感器的像素高达 2000 万甚至 4000 万。从像素值而言,远远高于现在的单反相机,可是,摄影爱好者依然是经常手持单反拍摄而不是手持手机拍摄,其主要原因就在于,手机相机所匹配的光学成像系统的镜头模组,分辨率是达不到对应图像传感器的光学分辨率的。所以,决定整个相机拍摄的分辨率的是光学成像系统。
照明光源是电子内窥镜的核心之一,主要由光源系统和导光光纤组成,主要功能是为腔体照明。照明光源有LED光源、氙气灯、卤素灯、白炽灯、汞灯、金卤灯。
光源转化为冷光(降级色温)。首先,要采用真空镀膜的非球形反射镜面,该镜面通过镀膜能够吸收大量的红外线,使得发光温度得到有效的降低,为了保证镀膜的正常工作,还要在光源旁边加上冷却风扇。确保其散热性能。
暖色红-橙光相比冷色蓝-白光具有更低的色温。用于内窥镜的先进LED系统允许用户调节每种可见光颜色,得到使人舒适的CCT水平,从而降低眼睛疲劳。
照明光源安装方式,有前置安装和后置安装两种,前置安装是采用微型LED灯珠,将灯珠与镜头并排安装,内窥镜的前端为细孔径,空间位置很小,照明光源仅能采用微型 LED,没有额外的空间为光源进行散热系统的设计,使得其散热问题难以解决,以致光源的功率较低,使得整体照明亮度有限。后置照明光源安装,需借助导光光纤将照明光导入腹腔,光纤导光的效果如下图所示。
LED最大的优势就是装配简单,功耗较低,而光纤最大的优势就是在头端部图 导光光纤不会产生热量,且占用头端部的空间较小。因为光纤束只传导光,本身不会发热,且光纤束由若干根 直径25-50μm的光纤丝组成,可以根据不同的头端部设计成各种形状,以适应各种各样的成像器件及尺寸要求14。
当前腹腔镜与光学分子成像技术相结合的方式主要分为双光源双光路成像和双光源单光路成像两种机制。
双光源双光路成像系统含有两个光源:激发光光源和白光光源;两个相机:荧光相机采集成像部位的荧光信息,彩色相机采集与普通内窥镜成像效果相同的白光图像。两种光源通过光纤或者分光棱镜耦合后送入内窥镜中照射成像区域,激发成像区所吸收的荧光试剂使其发射出另一谱段的发射光。内窥镜采集发射光同时将采集到的分成两部分,一部分经过可见光滤光片(400-650 nm)送入彩色相机中,另外一部分经过发射光滤光片(根据荧光试剂的发射谱段来定)送入荧光相机中成像15。
滤光轮交替进行白光和荧光成像,或者通过在一定时间间隔内同步触发激发光源和相机、白光光源和相机,用一台相机来获取荧光图像和白光图像。这种方法系统体积小,操作灵活方便,但是不能同时获取白光图像和荧光图像。
16在正常白色照明光源下肉眼和摄像头均无法识别荧光波长,若要清晰识别荧光图像,只有将照明光源关闭。因此,正常照明的明场图像与无光源照明的荧光图像无法在同一时间内采集。为了实现在正常照明模式下将荧光标记肿瘤部位显示出来,采用分时段采集白光图像和荧光图像后再进行处理融合标记。
处理融合标记时使用的两种图像的采集时间差应降到最低,可最大限度的让两种图像的实际误差降到最低,而最低时间差为摄像头的单帧拍摄时间。
内窥镜的图像处理中心,核心功能是将拍摄采集到的图像进行处理加工然后显示出来,也可在此进行录像、数据保存、归档、分析等。显示器则是处理的图像显示出来。
:度量融合图像含有源图像信息量多少的指标。MI值越大表示融合图像继承的信息越多,融合效果越好;
:衡量的是融合图像的信息保真度,与人类的视觉系统是保持一致,VIF 计算融合图像与源图像之间的失真程度,能准确地发现融合图像中存在的畸变和改进。VIF 值越大,融合效果越好;
:用于度量从源图像中传输的边缘信息量。并在此基础上假设融合图像保留了源图像中的边缘信息,值越大则梯度丢失越小,融合图像保留的梯度信息越多。
联系人:石经理
手 机:18106121178(微信同号)
Q Q:460917578
邮 箱:18106121175@www.huidadr.com
官 网:www.huidadr.com